Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6719, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509204

RESUMO

Alveolar bone loss caused by periodontal disease eventually leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are the tissue-specific cells for maintaining and repairing the periodontal ligament, cementum, and alveolar bone. Here, we investigated the role of erythropoietin receptor (EPOR), which regulates the microenvironment-modulating function of mesenchymal stem cells, in PDLSC-based periodontal therapy. We isolated PDLSCs from patients with chronic periodontal disease and healthy donors, referred to as PD-PDLSCs and Cont-PDLSCs, respectively. PD-PDLSCs exhibited reduced potency of periodontal tissue regeneration and lower expression of EPOR compared to Cont-PDLSCs. EPOR-silencing suppressed the potency of Cont-PDLSCs mimicking PD-PDLSCs, whereas EPO-mediated EPOR activation rejuvenated the reduced potency of PD-PDLSCs. Furthermore, we locally transplanted EPOR-silenced and EPOR-activated PDLSCs into the gingiva around the teeth of ligament-induced periodontitis model mice and demonstrated that EPOR in PDLSCs participated in the regeneration of the periodontal ligament, cementum, and alveolar bone in the ligated teeth. The EPOR-mediated paracrine function of PDLSCs maintains periodontal immune suppression and bone metabolic balance via osteoclasts and osteoblasts in the periodontitis model mice. Taken together, these results suggest that EPOR signaling is crucial for PDLSC-based periodontal regeneration and paves the way for the development of novel options for periodontal therapy.


Assuntos
Doenças Periodontais , Periodontite , Humanos , Camundongos , Animais , Ligamento Periodontal , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Células Cultivadas , Diferenciação Celular , Células-Tronco , Doenças Periodontais/terapia , Doenças Periodontais/metabolismo , Periodontite/terapia , Periodontite/metabolismo , Ligamentos , Osteogênese/fisiologia
2.
Arch Biochem Biophys ; 750: 109821, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37979903

RESUMO

The metastases of breast cancer to bone often cause osteolytic lesions not only by stimulating osteoclasts to resorb the bone but also by inhibiting osteoblasts from bone formation. Although tumor cell-derived extracellular vesicles (EVs) promote osteoclast differentiation and bone resorption, their roles in osteoblast differentiation and functions have not been elucidated. In this study, we investigated the effects of breast cancer cell-derived EVs on osteoblast differentiation and functions in vitro. We found that upon osteogenic induction, 4T1 bone metastatic mouse mammary tumor cell-derived EVs (4T1-EVs) were inhibited matrix mineralization of ST2 mouse bone marrow stromal cells. Temporal expression analysis of osteoblast marker genes, including runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), collagen type I (Col1a1), bone sialoprotein (Bsp), and osteocalcin (Bglap) revealed that 4T1-EVs decreased their expression during the late stage of osteoblast differentiation. Elevated levels of c-Jun N-terminal kinase (JNK) phosphorylation, upon osteogenic induction, were diminished by 4T1-EVs, significantly. In contrast, the nullification of reduced JNK phosphorylation by anisomycin, a potent JNK activator, increased the expression levels of osteoblast differentiation markers. Overall, our data indicated that 4T1-EVs affect osteoblast maturation, at least partially, through the regulation of JNK activity, which provides novel insights into the pathological impact of osteolytic bone metastasis and the role of EVs in osteoblast differentiation.


Assuntos
Neoplasias Ósseas , Vesículas Extracelulares , Animais , Camundongos , Osso e Ossos , Diferenciação Celular , Osteoblastos , Osteogênese , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
3.
Surg Today ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668735

RESUMO

Hirschsprung disease (HSCR) and its associated disorders (AD-HSCR) often result in severe hypoperistalsis caused by enteric neuropathy, mesenchymopathy, and myopathy. Notably, HSCR involving the small intestine, isolated hypoganglionosis, chronic idiopathic intestinal pseudo-obstruction, and megacystis-microcolon-intestinal hypoperistalsis syndrome carry a poor prognosis. Ultimately, small-bowel transplantation (SBTx) is necessary for refractory cases, but it is highly invasive and outcomes are less than optimal, despite advances in surgical techniques and management. Thus, regenerative therapy has come to light as a potential form of treatment involving regeneration of the enteric nervous system, mesenchyme, and smooth muscle in affected areas. We review the cutting-edge regenerative therapeutic approaches for managing HSCR and AD-HSCR, including the use of enteric nervous system progenitor cells, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells as cell sources, the recipient intestine's microenvironment, and transplantation methods. Perspectives on the future of these treatments are also discussed.

4.
Front Endocrinol (Lausanne) ; 14: 1151429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033255

RESUMO

Systemic transplantation of mesenchymal stem cells (MSCs), such as bone marrow MSCs (BMMSCs) and stem cells from human exfoliated deciduous teeth (SHED), is considered a prominent treatment for osteopenia. However, the mechanism of action of the transplanted MSCs has been poorly elucidated. In the recipient target tissue, including bone and bone marrow, only a few donor MSCs can be detected, suggesting that the direct contribution of donor MSCs may not be expected for osteopenia treatment. Meanwhile, secretomes, especially contents within extracellular vesicles (EVs) released from donor MSCs (MSC-EVs), play key roles in the treatment of several diseases. In this context, administrated donor MSC-EVs may affect bone-forming function of recipient cells. In this review, we discuss how MSC-EVs contribute to bone recovery recipient tissue in osteopenia. We also summarize a novel mechanism of action of systemic administration of SHED-derived EVs (SHED-EVs) in osteopenia. We found that reduced telomerase activity in recipient BMMSCs caused the deficiency of microenvironmental modulating function, including bone and bone marrow-like niche formation and immunomodulation in estrogen-deficient osteopenia model mice. Systemic administration of SHED-EVs could exert therapeutic effects on bone reduction via recovering the telomerase activity, leading to the rejuvenation of the microenvironmental modulating function in recipient BMMSCs, as seen in systemic transplantation of SHED. RNase-preconditioned donor SHED-EVs diminished the therapeutic benefits of administrated SHED-EVs in the recipient osteopenia model mice. These facts suggest that MSC-EV therapy targets the recipient BMMSCs to rejuvenate the microenvironmental modulating function via telomerase activity, recovering bone density. We then introduce future challenges to develop the reproducible MSC-EV therapy in osteopenia.


Assuntos
Doenças Ósseas Metabólicas , Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Telomerase , Camundongos , Humanos , Animais , Doenças Ósseas Metabólicas/terapia
5.
Dent Mater J ; 42(2): 282-290, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36696988

RESUMO

Carbonate apatite (CO3Ap) is a major inorganic bone component and an effective bone substitute. To clarify the function of CO3Ap, we compared differences among CO3Ap, hydroxyapatite (HAp), and ß-tricalcium phosphate (ß-TCP) by focusing on mesenchymal stem cells (MSCs) that have a role in wound healing. For in vivo experiments, maxillary molars were removed and the bone substitute was inserted. MSC accumulation around extraction sockets was significantly promoted in CO3Ap and ß-TCP groups. For in vitro experiments, MSCs were cultured with bone substitutes. The differentiation potential and amount of calcium deposition were significantly lower in CO3Ap and HAp groups than in the ß-TCP group. Increases in insulin-like growth factor-I and vascular endothelial growth factor were found only in the CO3Ap group. CO3Ap-filled extraction sockets accumulated MSCs, and MSCs cultured in the presence of CO3Ap produced large amounts of growth factors. These results suggest that CO3Ap promotes healing of tooth extraction sockets.


Assuntos
Substitutos Ósseos , Células-Tronco Mesenquimais , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular , Fosfatos de Cálcio/farmacologia , Durapatita/farmacologia
6.
J Cell Physiol ; 238(3): 566-581, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715607

RESUMO

Nuclear protein 1 (NUPR1) is a stress-induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11-week-old mice. Analysis of differentially expressed genes between wild-type (WT) and Nupr1-knockout (Nupr1-KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor-ß signaling was markedly downregulated in Nupr1-KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro-cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age-related diseases, we analyzed aging-related bone loss in Nupr1-KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6-19 months of age, whereas aging-related trabecular bone loss was attenuated, especially in Nupr1-KO male mice. Moreover, cellular senescence-related markers were upregulated in the osteocytes of 6-19-month-old WT male mice but markedly downregulated in the osteocytes of 19-month-old Nupr1-KO male mice. Oxidative stress-induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro-cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1-mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age-related bone loss.


Assuntos
Osso e Ossos , Regulação para Baixo , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Osteoporose , Transdução de Sinais , Proteína Smad1 , Animais , Feminino , Masculino , Camundongos , Osso e Ossos/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Camundongos Knockout , Osteoblastos/metabolismo , Osteócitos/metabolismo , Osteogênese , Osteoporose/metabolismo , Osteoporose/prevenção & controle , Proteína Smad1/metabolismo
7.
Mol Metab ; 66: 101599, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36113772

RESUMO

OBJECTIVE: Chronic liver diseases often involve metabolic damage to the skeletal system. The underlying mechanism of bone loss in chronic liver diseases remains unclear, and appropriate therapeutic options, except for orthotopic liver transplantation, have proved insufficient for these patients. This study aimed to investigate the efficacy and mechanism of transplantation of immature hepatocyte-like cells converted from stem cells from human exfoliated deciduous teeth (SHED-Heps) in bone loss of chronic liver fibrosis. METHODS: Mice that were chronically treated with CCl4 received SHED-Heps, and trabecular bone density, reactive oxygen species (ROS), and osteoclast activity were subsequently analyzed in vivo and in vitro. The effects of stanniocalcin 1 (STC1) knockdown in SHED-Heps were also evaluated in chronically CCl4 treated mice. RESULTS: SHED-Hep transplantation (SHED-HepTx) improved trabecular bone loss and liver fibrosis in chronic CCl4-treated mice. SHED-HepTx reduced hepatic ROS production and interleukin 17 (Il-17) expression under chronic CCl4 damage. SHED-HepTx reduced the expression of both Il-17 and tumor necrosis factor receptor superfamily 11A (Tnfrsf11a) and ameliorated the imbalance of osteoclast and osteoblast activities in the bone marrow of CCl4-treated mice. Functional knockdown of STC1 in SHED-Heps attenuated the benefit of SHED-HepTx including anti-bone loss effect by suppressing osteoclast differentiation through TNFSF11-TNFRSF11A signaling and enhancing osteoblast differentiation in the bone marrow, as well as anti-fibrotic and anti-ROS effects in the CCl4-injured livers. CONCLUSIONS: These findings suggest that targeting hepatic ROS provides a novel approach to treat bone loss resulting from chronic liver diseases.


Assuntos
Interleucina-17 , Cirrose Hepática , Humanos , Camundongos , Animais , Interleucina-17/metabolismo , Cirrose Hepática/metabolismo , Hepatócitos/metabolismo , Estresse Oxidativo , Fibrose
8.
Cancer Sci ; 113(12): 4219-4229, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053115

RESUMO

Aberrant osteoclast formation and activation are the hallmarks of osteolytic metastasis. Extracellular vesicles (EVs), released from bone metastatic tumor cells, play a pivotal role in the progression of osteolytic lesions. However, the mechanisms through which tumor cell-derived EVs regulate osteoclast differentiation and function have not been fully elucidated. In this study, we found that 4T1 bone metastatic mouse mammary tumor cell-derived EVs (4T1-EVs) are taken up by mouse bone marrow macrophages to facilitate osteoclastogenesis. Furthermore, treatment of mature osteoclasts with 4T1-EVs promoted bone resorption, which was accompanied by enhanced survival of mature osteoclasts through the negative regulation of caspase-3. By comparing the miRNA content in 4T1-EVs with that in 67NR nonmetastatic mouse mammary tumor cell-derived EVs (67NR-EVs), miR-92a-3p was identified as one of the most enriched miRNAs in 4T1-EVs, and its transfer into mature osteoclasts significantly reduced apoptosis. Bioinformatic and Western blot analyses revealed that miR-92a-3p directly targeted phosphatase and tensin homolog (PTEN) in mature osteoclasts, resulting in increased levels of phospho-Akt. Our findings provide novel insights into the EV-mediated regulation of osteoclast survival through the transfer of miR-92a-3p, which enhances mature osteoclast survival via the Akt survival signaling pathway, thus promoting bone resorption.


Assuntos
Reabsorção Óssea , Vesículas Extracelulares , MicroRNAs , Osteoclastos , Animais , Camundongos , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais
9.
STAR Protoc ; 3(2): 101386, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35592060

RESUMO

Human dental pulp stem cell (hDPSCs)-based therapy is a feasible option for regenerative medicine, such as dental pulp regeneration. Here, we show the steps needed to colony-forming unit-fibroblasts (CFU-F)-based isolation, expansion, and cryopreservation of hDPSCs for manufacturing clinical-grade products under a xenogeneic-free/serum-free condition. We also demonstrate the characterization of hDPSCs by CFU-F, flow cytometric, and in vitro multipotent assays. For complete details on the use and execution of this protocol, please refer to Iwanaka et al. (2020).


Assuntos
Polpa Dentária , Regeneração , Diferenciação Celular , Humanos , Transplante de Células-Tronco
10.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408840

RESUMO

Recent advances in mesenchymal stem/stromal cell (MSC) research have led us to consider the feasibility of MSC-based therapy for various diseases. Human dental pulp-derived MSCs (hDPSCs) have been identified in the dental pulp tissue of deciduous and permanent teeth, and they exhibit properties with self-renewal and in vitro multipotency. Interestingly, hDPSCs exhibit superior immunosuppressive functions toward immune cells, especially T lymphocytes, both in vitro and in vivo. Recently, hDPSCs have been shown to have potent immunomodulatory functions in treating systemic lupus erythematosus (SLE) in the SLE MRL/lpr mouse model. However, the mechanisms underlying the immunosuppressive efficacy of hDPSCs remain unknown. This review aims to introduce a new target of hDPSC-based therapy on the recipient niche function in SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Medula Óssea , Polpa Dentária , Imunossupressores , Lúpus Eritematoso Sistêmico/terapia , Camundongos , Camundongos Endogâmicos MRL lpr
11.
Sci Rep ; 12(1): 6990, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484137

RESUMO

Hirschsprung's disease is a congenital entero-neuropathy that causes chronic constipation and intestinal obstruction. New treatments for entero-neuropathy are needed because current surgical strategies have limitations5. Entero-neuropathy results from enteric nervous system dysfunction due to incomplete colonization of the distal intestine by neural crest-derived cells. Impaired cooperation between the enteric nervous system and intestinal pacemaker cells may also contribute to entero-neuropathy. Stem cell therapy to repair these multiple defects represents a novel treatment approach. Dental pulp stem cells derived from deciduous teeth (dDPSCs) are multipotent cranial neural crest-derived cells, but it remains unknown whether dDPSCs have potential as a new therapy for entero-neuropathy. Here we show that intravenous transplantation of dDPSCs into the Japanese Fancy-1 mouse, an established model of hypoganglionosis and entero-neuropathy, improves large intestinal structure and function and prolongs survival. Intravenously injected dDPSCs migrate to affected regions of the intestine through interactions between stromal cell-derived factor-1α and C-X-C chemokine receptor type-4. Transplanted dDPSCs differentiate into both pacemaker cells and enteric neurons in the proximal colon to improve electrical and peristaltic activity, in addition to their paracrine effects. Our findings indicate that transplanted dDPSCs can differentiate into different cell types to correct entero-neuropathy-associated defects.


Assuntos
Sistema Nervoso Entérico , Doença de Hirschsprung , Animais , Polpa Dentária , Doença de Hirschsprung/terapia , Camundongos , Transplante de Células-Tronco
12.
Stem Cell Res Ther ; 12(1): 582, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809720

RESUMO

BACKGROUND: Biliary atresia (BA) is a severe hepatobiliary disease in infants that ultimately results in hepatic failure; however, its pathological mechanism is poorly elucidated. Current surgical options, including Kasai hepatoportoenterostomy and orthotopic liver organ transplantations, are palliative; thus, innovation in BA therapy is urgent. METHODS: To examine whether BA-specific post-natal stem cells are feasible for autologous cell source for BA treatment, we isolated from human exfoliated deciduous teeth, namely BA-SHED, using a standard colony-forming unit fibroblast (CFU-F) method and compared characteristics as mesenchymal stem cells (MSCs) to healthy donor-derived control SHED, Cont-SHED. BA-SHED and Cont-SHED were intrasplenically transplanted into chronic carbon tetrachloride (CCl4)-induced liver fibrosis model mice, followed by the analysis of bile drainage function and donor integration in vivo. Immunohistochemical assay was examined for the regeneration of intrahepatic bile ducts in the recipient's liver using anti-human specific keratin 19 (KRT19) antibody. RESULTS: BA-SHED formed CFU-F, expressed MSC surface markers, and exhibited in vitro mesenchymal multipotency similar to Cont-SHED. BA-SHED showed less in vitro hepatogenic potency than Cont-SHED. Cont-SHED represented in vivo bile drainage function and KRT19-positive biliary regeneration in chronic carbon tetrachloride-induced liver fibrosis model mice. BA-SHED failed to show in vivo biliary potency and bile drainage function compared to Cont-SHED. CONCLUSION: These findings indicate that BA-SHED are not feasible source for BA treatment, because BA-SHED may epigenetically modify the underlying prenatal and perinatal BA environments. In conclusion, these findings suggest that BA-SHED-based studies may provide a platform for understanding the underlying molecular mechanisms of BA development and innovative novel modalities in BA research and treatment.


Assuntos
Atresia Biliar , Transplante de Fígado , Células-Tronco Mesenquimais , Animais , Atresia Biliar/metabolismo , Atresia Biliar/patologia , Humanos , Lactente , Cirrose Hepática/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco/metabolismo
13.
PLoS One ; 16(11): e0259966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34780561

RESUMO

Amelogenins, major extra cellular matrix proteins of developing tooth enamel, are predominantly expressed by ameloblasts and play significant roles in the formation of enamel. Recently, amelogenin has been detected in various epithelial and mesenchymal tissues, implicating that it might have distinct functions in various tissues. We have previously reported that leucine rich amelogenin peptide (LRAP), one of the alternate splice forms of amelogenin, regulates receptor activator of NF-kappa B ligand (RANKL) expression in cementoblast/periodontal ligament cells, suggesting that the amelogenins, especially LRAP, might function as a signaling molecule in bone metabolism. The objective of this study was to identify and define LRAP functions in bone turnover. We engineered transgenic (TgLRAP) mice using a murine 2.3kb α1(I)-collagen promoter to drive expression of a transgene consisting of LRAP, an internal ribosome entry site (IRES) and enhanced green fluorescent protein (EGFP) to study functions of LRAP in bone formation and resorption. Calvarial cell cultures from the TgLRAP mice showed increased alkaline phosphatase (ALP) activity and increased formation of mineralized nodules compared to the cells derived from wild-type (WT) mice. The TgLRAP calvarial cells also showed an inhibitory effect on osteoclastogenesis in vitro. Gene expression comparison by quantitative polymerase chain reaction (Q-PCR) in calvarial cells indicated that bone formation makers such as Runx2, Alp, and osteocalcin were increased in TgLRAP compared to the WT cells. Meanwhile, Rankl expression was decreased in the TgLRAP cells in vitro. The ovariectomized (OVX) TgLRAP mice resisted bone loss induced by ovariectomy resulting in higher bone mineral density in comparison to OVX WT mice. The quantitative analysis of calcein intakes indicated that the ovariectomy resulted in increased bone formation in both WT and TgLRAP mice; OVX TgLRAP appeared to show the most remarkably increased bone formation. The parameters for bone resorption in tissue sections showed increased number of osteoclasts in OVX WT, but not in OVX TgLRAP over that of sham operated WT or TgLRAP mice, supporting the observed bone phenotypes in OVX mice. This is the first report identifying that LRAP, one of the amelogenin splice variants, affects bone turnover in vivo.


Assuntos
Reabsorção Óssea/genética , Cadeia alfa 1 do Colágeno Tipo I/genética , Proteínas do Esmalte Dentário/genética , Proteínas de Fluorescência Verde/genética , Ovariectomia/efeitos adversos , Animais , Densidade Óssea , Reabsorção Óssea/etiologia , Células Cultivadas , Feminino , Fluoresceínas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Sítios Internos de Entrada Ribossomal , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Regiões Promotoras Genéticas
14.
Lab Invest ; 101(11): 1449-1457, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611305

RESUMO

Adrenomedullin (ADM), a member of the calcitonin family of peptides, is a potent vasodilator and was shown to have the ability to modulate bone metabolism. We have previously found a unique cell surface antigen (Kat1 antigen) expressed in rat osteoclasts, which is involved in the functional regulation of the calcitonin receptor (CTR). Cross-linking of cell surface Kat1 antigen with anti-Kat1 antigen monoclonal antibody (mAbKat1) stimulated osteoclast formation only under conditions suppressed by calcitonin. Here, we found that ADM provoked a significant stimulation in osteoclastogenesis only in the presence of calcitonin; a similar biological effect was seen with mAbKat1 in the bone marrow culture system. This stimulatory effect on osteoclastogenesis mediated by ADM was abolished by the addition of mAbKat1. 125I-labeled rat ADM (125I-ADM)-binding experiments involving micro-autoradiographic studies demonstrated that mononuclear precursors of osteoclasts abundantly expressed ADM receptors, and the specific binding of 125I-ADM was markedly inhibited by the addition of mAbKat1, suggesting a close relationship between the Kat1 antigen and the functional ADM receptors expressed on cells in the osteoclast lineage. ADM receptors were also detected in the osteoclast progenitor cells in the late mitotic phase, in which only one daughter cell of the dividing cell express ADM receptors, suggesting the semiconservative cell division of the osteoclast progenitors in the initiation of osteoclastogenesis. Messenger RNAs for the receptor activity-modifying-protein 1 (RAMP1) and calcitonin receptor-like receptor (CRLR) were expressed in cells in the osteoclast lineage; however, the expression of RAMP2 or RAMP3 was not detected in these cells. It is suggested that the Kat1 antigen is involved in the functional ADM receptor distinct from the general ADM receptor, consisting of CRLR and RAMP2 or RAMP3. Modulation of osteoclastogenesis through functional ADM receptors abundantly expressed on mononuclear osteoclast precursors is supposed to be important in the fine regulation of osteoclast differentiation in a specific osteotrophic hormonal condition with a high level of calcitonin in blood.


Assuntos
Osso e Ossos/citologia , Calcitonina/metabolismo , Diferenciação Celular , Osteogênese , Receptores de Adrenomedulina/metabolismo , Animais , Animais Recém-Nascidos , Osso e Ossos/irrigação sanguínea , Ratos Sprague-Dawley
15.
Lab Invest ; 101(11): 1475-1483, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34504305

RESUMO

Oral malignant melanoma, which frequently invades the hard palate or maxillary bone, is extremely rare and has a poor prognosis. Bone morphogenetic protein (BMP) is abundantly expressed in bone matrix and is highly expressed in malignant melanoma, inducing an aggressive phenotype. We examined the role of BMP signaling in the acquisition of an aggressive phenotype in melanoma cells in vitro and in vivo. In five cases, immunohistochemistry indicated the phosphorylation of Smad1/5 (p-Smad1/5) in the nuclei of melanoma cells. In the B16 mouse and A2058 human melanoma cell lines, BMP2, BMP4, or BMP7 induces morphological changes accompanied by the downregulation of E-cadherin, and the upregulation of N-cadherin and Snail, markers of epithelial-mesenchymal transition (EMT). BMP2 also stimulates cell invasion by increasing matrix metalloproteinase activity in B16 cells. These effects were canceled by the addition of LDN193189, a specific inhibitor of Smad1/5 signaling. In vivo, the injection of B16 cells expressing constitutively activated ALK3 enhanced zygoma destruction in comparison to empty B16 cells by increasing osteoclast numbers. These results suggest that the activation of BMP signaling induces EMT, thus driving the acquisition of an aggressive phenotype in malignant melanoma.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Ósseas/secundário , Melanoma/secundário , Neoplasias Bucais/patologia , Proteínas Smad Reguladas por Receptor/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Osso e Ossos/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Masculino , Melanoma/metabolismo , Camundongos , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Transdução de Sinais
16.
Lab Invest ; 101(12): 1571-1584, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537825

RESUMO

Osteoclasts are multinucleated cells formed through specific recognition and fusion of mononuclear osteoclast precursors derived from hematopoietic stem cells. Detailed cellular events concerning cell fusion in osteoclast differentiation remain ambiguous. Tunneling nanotubes (TNTs), actin-based membrane structures, play an important role in intercellular communication between cells. We have previously reported the presence of TNTs in the fusion process of osteoclastogenesis. Here we analyzed morphological details of TNTs using scanning electron microscopy. The osteoclast precursor cell line RAW-D was stimulated to form osteoclast-like cells, and morphological details in the appearance of TNTs were extensively analyzed. Osteoclast-like cells could be classified into three types; early osteoclast precursors, late osteoclast precursors, and multinucleated osteoclast-like cells based on the morphological characteristics. TNTs were frequently observed among these three types of cells. TNTs could be classified into thin, medium, and thick TNTs based on the diameter and length. The shapes of TNTs were dynamically changed from thin to thick. Among them, medium TNTs were often observed between two remote cells, in which side branches attached to the culture substrates and beaded bulge-like structures were often observed. Cell-cell interaction through TNTs contributed to cell migration and rapid transport of information between cells. TNTs were shown to be involved in cell-cell fusion between osteoclast precursors and multinucleated osteoclast-like cells, in which movement of membrane vesicles and nuclei was observed. Formation of TNTs was also confirmed in primary cultures of osteoclasts. Furthermore, we have successfully detected TNTs formed between osteoclasts observed in the bone destruction sites of arthritic rats. Thus, formation of TNTs may be important for the differentiation of osteoclasts both in vitro and in vivo. TNTs could be one target cellular structure for the regulation of osteoclast differentiation and function in bone diseases.


Assuntos
Estruturas da Membrana Celular/ultraestrutura , Nanotubos/ultraestrutura , Osteogênese , Animais , Fusão Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos Endogâmicos Lew
17.
J Immunol ; 206(12): 3053-3063, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34078710

RESUMO

Systemic transplantation of stem cells from human exfoliated deciduous teeth (SHED) is used to treat systemic lupus erythematosus (SLE)-like disorders in MRL/lpr mice. However, the mechanisms underlying the SHED-based therapy remain unclear. In this study, we hypothesized that trophic factors within SHED-releasing extracellular vesicles (SHED-EVs) ameliorate the SLE-like phenotypes in MRL/lpr mice. SHED-EVs were isolated from the culture supernatant of SHED. SHED-EVs were treated with or without RNase and systemically administered to MRL/lpr mice. Subsequently, recipient bone marrow mesenchymal stem cells (BMMSCs) isolated from SHED-EV-administered MRL/lpr mice were examined for the in vitro and in vivo activity of hematopoietic niche formation and immunoregulation. Furthermore, the recipient BMMSCs were secondarily transplanted into MRL/lpr mice. The systemic SHED-EV infusion ameliorated the SLE-like phenotypes in MRL/lpr mice and improved the functions of recipient BMMSCs by rescuing Tert mRNA-associated telomerase activity, hematopoietic niche formation, and immunoregulation. The secondary transplantation of recipient BMMSCs recovered the immune condition and renal functions of MRL/lpr mice. The RNase treatment depleted RNAs, such as microRNAs, within SHED-EVs, and the RNA-depleted SHED-EVs attenuated the benefits of SHED-EVs in MRL/lpr mice. Collectively, our findings suggest that SHED-secreted RNAs, such as microRNAs, play a crucial role in treating SLE by targeting the telomerase activity of recipient BMMSCs.


Assuntos
Vesículas Extracelulares/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Nicho de Células-Tronco/imunologia , Células-Tronco/imunologia , Telomerase/imunologia , Dente Decíduo/imunologia , Animais , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Endogâmicos NOD , Camundongos SCID
18.
Stem Cell Res Ther ; 12(1): 57, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33436050

RESUMO

BACKGROUND: Stem cells from human exfoliated deciduous teeth (SHED) have been reported to show the in vivo and in vitro hepatic differentiation, SHED-Heps; however, the cholangiogenic potency of SHED-Heps remains unclear. Here, we hypothesized that SHED-Heps contribute to the regeneration of intrahepatic bile duct system in chronic fibrotic liver. METHODS: SHED were induced into SHED-Heps under cytokine stimulation. SHED-Heps were intrasplenically transplanted into chronically CCl4-treated liver fibrosis model mice, followed by the analysis of donor integration and hepatobiliary metabolism in vivo. Immunohistochemical assay was examined for the regeneration of intrahepatic bile duct system in the recipient liver. Furthermore, SHED-Heps were induced under the stimulation of tumor necrosis factor alpha (TNFA). RESULTS: The intrasplenic transplantation of SHED-Heps into CCl4-treated mice showed that donor SHED-Heps behaved as human hepatocyte paraffin 1- and human albumin-expressing hepatocyte-like cells in situ and ameliorated CCl4-induced liver fibrosis. Of interest, the integrated SHED-Heps not only expressed biliary canaliculi ATP-binding cassette transporters including ABCB1, ABCB11, and ABCC2, but also recruited human keratin 19- (KRT19-) and KRT17-positive cells, which are considered donor-derived cholangiocytes, regenerating the intrahepatic bile duct system in the recipient liver. Furthermore, the stimulation of TNFA induced SHED-Heps into KRT7- and SRY-box 9-positive cells. CONCLUSIONS: Collectively, our findings demonstrate that infused SHED-Heps showed cholangiogenic ability under the stimulation of TNFA in CCl4-damaged livers, resulting in the regeneration of biliary canaliculi and interlobular bile ducts in chronic fibrotic liver. Thus, the present findings suggest that SHED-Heps may be a novel source for the treatment of cholangiopathy.


Assuntos
Hepatócitos , Células-Tronco , Animais , Diferenciação Celular , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Camundongos , Proteína 2 Associada à Farmacorresistência Múltipla , Dente Decíduo
19.
Stem Cell Res Ther ; 11(1): 296, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680564

RESUMO

BACKGROUND: Systemic transplantation of stem cells from human exfoliated deciduous teeth (SHED) recovers bone loss in animal models of osteoporosis; however, the mechanisms underlying this remain unclear. Here, we hypothesized that trophic factors within SHED-releasing extracellular vesicles (SHED-EVs) rescue osteoporotic phenotype. METHODS: EVs were isolated from culture supernatant of SHED. SHED-EVs were treated with or without ribonuclease and systemically administrated into ovariectomized mice, followed by the function of recipient bone marrow mesenchymal stem cells (BMMSCs) including telomerase activity, osteoblast differentiation, and sepmaphorine-3A (SEMA3A) secretion. Subsequently, human BMMSCs were stimulated by SHED-EVs with or without ribonuclease treatment, and then human BMMSCs were examined regarding the function of telomerase activity, osteoblast differentiation, and SEMA3A secretion. Furthermore, SHED-EV-treated human BMMSCs were subcutaneously transplanted into the dorsal skin of immunocompromised mice with hydroxyapatite tricalcium phosphate (HA/TCP) careers and analyzed the de novo bone-forming ability. RESULTS: We revealed that systemic SHED-EV-infusion recovered bone volume in ovariectomized mice and improved the function of recipient BMMSCs by rescuing the mRNA levels of Tert and telomerase activity, osteoblast differentiation, and SEMA3A secretion. Ribonuclease treatment depleted RNAs, including microRNAs, within SHED-EVs, and these RNA-depleted SHED-EVs attenuated SHED-EV-rescued function of recipient BMMSCs in the ovariectomized mice. These findings were supported by in vitro assays using human BMMSCs incubated with SHED-EVs. CONCLUSION: Collectively, our findings suggest that SHED-secreted RNAs, such as microRNAs, play a crucial role in treating postmenopausal osteoporosis by targeting the telomerase activity of recipient BMMSCs.


Assuntos
Vesículas Extracelulares , Osteoporose , Telomerase , Animais , Células da Medula Óssea , Camundongos , Osteoporose/terapia , Células-Tronco , Telomerase/genética
20.
Stem Cell Res Ther ; 11(1): 134, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213198

RESUMO

BACKGROUND: Human deciduous pulp stem cells (hDPSCs) have remarkable stem cell potency associated with cell proliferation, mesenchymal multipotency, and immunosuppressive function and have shown beneficial effects in a variety of animal disease models. Recent studies demonstrated that hDPSCs exhibited in vivo anti-fibrotic and anti-inflammatory action and in vivo hepatogenic-associated liver regeneration, suggesting that hDPSCs may offer a promising source with great clinical demand for treating liver diseases. However, how to manufacture ex vivo large-scale clinical-grade hDPSCs with the appropriate quality, safety, and preclinical efficacy assurances remains unclear. METHODS: We isolated hDPSCs from human deciduous dental pulp tissues formed by the colony-forming unit-fibroblast (CFU-F) method and expanded them under a xenogeneic-free and serum-free (XF/SF) condition; hDPSC products were subsequently stored by two-step banking including a master cell bank (MCB) and a working cell bank (WCB). The final products were directly thawed hDPSCs from the WCB. We tested the safety and quality check, stem cell properties, and preclinical potentials of final hDPSC products and hDPSC products in the MCB and WCB. RESULTS: We optimized manufacturing procedures to isolate and expand hDPSC products under a XF/SF culture condition and established the MCB and the WCB. The final hDPSC products and hDPSC products in the MCB and WCB were validated the safety and quality including population doubling ability, chromosome stability, microorganism safety, and stem cell properties including morphology, cell surface marker expression, and multipotency. We also evaluated the in vivo immunogenicity and tumorigenicity and validated in vivo therapeutic efficacy for liver regeneration in a CCl4-induced chronic liver fibrosis mouse model in the final hDPSC products and hDPSC products in the WCB. CONCLUSION: The manufacture and quality control results indicated that the present procedure could produce sufficient numbers of clinical-grade hDPSC products from a tiny deciduous dental pulp tissue to enhance clinical application of hDPSC products in chronic liver fibrosis.


Assuntos
Polpa Dentária , Células-Tronco , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Cirrose Hepática/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...